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We introduce a numerical approximation method for estimating an unknown parameter of a �primary�
chaotic system which is partially observed through a scalar time series. Specifically, we show that the recursive
minimization of a suitably designed cost function that involves the dynamic state of a fully observed �second-
ary� system and the observed time series can lead to the identical synchronization of the two systems and the
accurate estimation of the unknown parameter. The salient feature of the proposed technique is that the only
external input to the secondary system is the unknown parameter which needs to be adjusted. We present
numerical examples for the Lorenz system which show how our algorithm can be considerably faster than
some previously proposed methods.
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An important issue in time series analysis of a nonlinear
system is the estimation of the parameters in the system
model using scalar measurements from the system. Provided
the functional form of the model is accurate, these estimates
can subsequently be used to track the dynamic system state.
This problem can be tackled in different ways, e.g., using
multiple shooting methods �1,2� or some standard statistical
procedures �3–7�. However, these methods are usually offline
�the complete record of observations is iteratively processed
to obtain a sequence of convergent solutions� and involve the
solution of high-dimensional minimization problems, since
not only the unknown parameters but also the initial values
of the trajectory segments between the sampling times need
to be estimated �1,8�.

Alternatively, the new techniques for synchronization of
coupled chaotic systems have been turned into promising
parameter estimation methods by some authors �8–15�. This
approach is appealing because the only unknowns are the
parameters to be estimated, hence only low-dimensional op-
timization problems need to be tackled.

The vast majority of synchronization-based methods for
parameter estimation that are found in the literature depend
on the explicit coupling �either by the Pecora and Carroll
technique �16� or by the so-called linear feedback coupling
�17�� of the chaotic system that outputs the time series and a
model system with the same functional form. In this way, it
is ensured that the state of the model system does not arbi-
trarily deviate from the state of the original system, as long
as the difference in the corresponding parameter sets is not
too large �12�.

A more challenging problem arises when there is not such
a explicit coupling of the two systems, because the model
system can only be controlled by dynamically adjusting the
unknown parameters �and arbitrary divergence can be ex-
pected if control is not properly and carefully exercised�.
Only very recently, it has been shown that if the time series
consists of the full system state and only one parameter in

the model is to be adjusted, identical synchronization and
parameter estimation can be achieved under certain condi-
tions �18�.

In this paper, we focus on the latter scenario �no explicit
coupling� and propose an online numerical approximation
algorithm that allows to achieve both accurate estimation of
a single parameter and identical synchronization of the sys-
tems when only a scalar time series �instead of the full state�
is observed. The proposed method aims at the minimization,
with respect to the adjustable parameter in the model, of a
suitably designed cost function that involves the scalar ob-
servations and the dynamics of the model. Simple analytical
approximations allow to systematically derive online estima-
tion algorithms for any unknown parameter.

To be specific, let

ẋ = f�x,p� �1�

represent the primary system with state variables x�Rn, and
an unknown parameter p�R. If the functional form of Eq.
�1� is known, we can build the secondary system as

ẏ = g�y,q� �2�

with g identical to f, where y�Rn is the time-varying vector
that contains the state variables and q�R is a free �adjust-
able� parameter. The system in Eq. �2� is fully observed, and
we assume the ability to periodically change the value of q.
Note that there is no explicit coupling between the dynamic
variables of the primary and secondary systems. Finally, let
h�x� :Rn→R be the scalar time series we observe from the
primary system, which consists of a known transformation of
a subset of the dynamic variables in Eq. �1�.

Our aim is to devise an algorithm to adaptively adjust q
until the secondary system variables and the parameter itself
converge to their counterparts in the primary system, i.e.,
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both y→x and q→p. In this way, synchronization between
both systems is achieved and the unknown parameter p is
estimated.

We propose a parameter adaptation procedure that is
based on the optimization of a cost function J that involves
the observed times series and the secondary system dynam-
ics. In general, we consider functions of the form

J�t� = �
0

t

�e����a��t−��/Td� , �3�

where e���=h�x�−h�y� is an error signal, � · � denotes the
vector norm, a�1,T is the adaptation period �i.e., we as-
sume that q can be updated every T time units�, and 0��
�1 is a forgetting factor used to guarantee that recent obser-
vations are emphasized over older ones. Obviously, e��� de-
pends on q through the argument of h�y� and, therefore, the
adjustable parameter can be updated at time t=nT as

qn = arg min
q

�J�nT��, n � N . �4�

The feasibility of the method relies on a choice of J that is
tractable to the extent of allowing the derivation of a practi-
cal and effective minimization algorithm. For example, we
could choose the straightforward error signal e���=xi−yi

�where xi and yi are the ith components of x and y� but,
unfortunately, it is difficult to minimize e2��� �furthermore its
integral� with respect to q. As an alternative, we have found
that particularly appealing results can be obtained when the
error signal consists of the difference between derivatives of
the dynamic variables. As an instance, let us consider the
observation h�x�= ẋi, and the resulting error signal e���= ẋi

− ẏi. In this case, we can build the quadratic cost function

J�t� = �
0

t

�ẋi��� − ẏi����2��t−��/Td� . �5�

The use of the difference of derivatives of the state variables
of the primary and secondary systems �instead of the
straightforward difference between the state variables �19��
is advantageous because the analytical expression of ẏ is
known from model �2� and, as a consequence, the signal
e���= ẋi���− ẏi��� is an explicit function of the parameters in
the ith dynamic equation. If the adjustable parameter appears
in equations other than the ith, higher-order derivatives can
be used to have q explicitly appear in e���.

The main limitation of our approach is that minimizing an
error signal that involves derivatives alone may not necessar-
ily lead to identical synchronization in general. Further re-
search is needed to determine what type of synchronization
�if any� can be expected from the minimization of a given
cost function.

Let us illustrate the application of the proposed method by
way of an example that involves the Lorenz system. Thus,
we assume the primary system

ẋ1 = − �1�x1 − x2�, ẋ2 = R1x1 − x2 − x1x3,

ẋ3 = − b1x3 + x1x2, �6�

where x= �x1 ,x2 ,x3��R3 forms the state space. The second-
ary system is

ẏ1 = − �2�y1 − y2�, ẏ2 = R2y1 − y2 − y1y3,

ẏ3 = − b2y3 + y1y2, �7�

where y= �y1 ,y2 ,y3��R3 contains the state variables. We
first consider the problem of estimating the parameter �1
assuming both b1 and R1 are a priori known. Therefore, b2
=b1 and R2=R1 are set from the start and �2 needs to be
adjusted. We assume that the observed time series from the
primary system is ẋ1 and, hence, the error signal is e���= ẋ1

− ẏ1. The nth update of the adjustable parameter q=�2 is
carried out by solving the equation

dJ

d�2
= − �

0

nT

2�ẋ1 − ẏ1�
dẏ1

d�2
�n−�/Td� = 0 �8�

for �2. Clearly, there is a difficulty in the computation of the
derivative dẏ1 /d�2 because both y1 and y2 have an implicit
dependence on �2 �see Eq. �7��. However, if we consider
only the explicit derivatives, the problem becomes very
simple and Eq. �8� reduces to

�
0

nT

�ẋ1 + �2�y1 − y2���y1 − y2��n−�/Td� = 0, �9�

which yields the nth parameter estimate

�2,n = −

�
0

nT

ẋ1�y1 − y2��n−�/Td�

�
0

nT

�y1 − y2�2�n−�/Td�

. �10�

We have neglected some implicit derivatives in obtaining the
updating rule �10� which, therefore, is only an approximate
solution of Eq. �8�. However, it has the virtues of being
simple to compute �it is given in closed form�, effective as a
joint synchronization and parameter estimation algorithm �as
will be subsequently shown by our numerical simulations�
and general �the same approach can be applied for any other
parameter in the system�. Moreover, some algebraic manipu-
lation allows to rewrite Eq. �10� as an adaptive algorithm
where the nth parameter estimate �2,n is computed as �2,n−1
plus an additive term. Specifically,

�2,n = �2,n−1 +
An − �2,n−1Bn

�Cn−1 + Bn
�11�

where

An = �
�n−1�T

nT

ẋ1�y2 − y1��n−�/Td� ,

Bn = �
�n−1�T

nT

�y1 − y2�2�n−�/Td� ,
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Cn−1 = �
0

�n−1�T

�y1 − y2�2��n−1�−�/Td� . �12�

The latter formulas are particularly suitable for the online
application of the proposed technique.

We have carried out computer simulations to numerically
demonstrate the performance of the algorithm given by Eq.
�11� in terms of parameter estimation accuracy. The primary
Lorenz system is assigned the standard parameter values,
��1 ,R1 ,b1�= �10,28, 8

3
�; hence we set b2=b1 , R2=R1 �fixed�,

and take an initial value �2,0=�1−5 for the algorithm of Eq.
�11� to start running. The equations of both the primary and
the secondary systems have been numerically integrated us-
ing a fourth-order Runge-Kutta method with integration step
I=10−3 time units �t.u.�. We have adopted the same value for
the parameter adaptation period, T=10−3 t.u., and the forget-
ting factor has been set as �=0.94. For comparison, we have
also applied to the same problem the algorithms proposed by
Maybhate and Amritkar �11� �subsequently denoted as MA�
and Sakaguchi �12�. The former is an adaptive method where
the adjustable parameter is handled as a dynamic variable
with an associated partial differential designed to ensure that
it converges to the desired value �much in the spirit of the
original paper by Parlitz �8��. The latter is an offline method
based on a Monte Carlo optimization procedure and its com-
putational complexity is much higher than that of the adap-
tive techniques �at each iteration, a complete simulation of
the secondary system has to be run with the length of the
available time series�. Both MA’s and Sakaguchi’s algo-
rithms involve a linear feedback coupling of the chaotic sys-
tems, which is not necessary for the technique proposed in
this paper. To implement the MA procedure, we use Ref.
�11�, Eq. �18� with coupling and stiffness parameters �=20
and �=1, respectively. The Sakaguchi method is applied
with coupling strength D=9, perturbation variance var�r�
=0.01, and 1000 steps �iterations�. The length of the ob-
served time series which is fed to the three algorithms is
Ts=40 t.u., and they all share the same initial condition for
the secondary system �y1 ,y2 ,y3�= �10.2,14.2,20.9�.

The results of the numerical simulation are shown in Figs.
1�a� and 1�b�. Figure 1�a� depicts the temporal evolution of
dynamic variables x1 �from the primary system� and y1 cor-
responding to the secondary system, as obtained for each one
of the three algorithms. It is seen that identical synchroniza-
tion is quickly achieved in all cases, after approximately 4
t.u. Note that synchronization is aided by the linear feedback
coupling in the case of MA and Sakaguchi but not for our
technique. Figure 1�b� shows the time evolution of the nor-
malized absolute error between �1 and �2, defined as 	�

= 	��2−�1� /�1	, for the MA and proposed techniques, as well
as the value of � for the final output of the Sakaguchi proce-
dure. It is clearly observed that the convergence of the pro-
posed algorithm is much faster �at the expense of a less
“smooth” trajectory�. The final estimates yielded by MA and
Sakaguchi could be improved by using longer observation
series. For Ts=40 t.u. and the considered setup, the Sakagu-
chi algorithm converges long before reaching the 1000th
step; hence there is no significant improvement in running
more iterations.

Next, we consider the problem of estimating R1 when
��1 ,b1�= �10, 8

3
� are known and the time series ẍ1 is available

�again, ẍ1 can be easily obtained from x1�. In this case, we set
��2 ,b2�= ��1 ,b1� and define the error signal e���= ẍ1− ÿ1 in
order to adjust q=R2. The second derivative is necessary
because R2 does not appear in the equation of ẋ1. The nth
update of the unknown parameter is carried out by solving

dJ

dR2
= − 2�

0

nT

�ẍ1 − ÿ1�
dÿ1

dR2
�n−�/Td� = 0, �13�

which can be handled in the same manner as Eq. �8�. In
particular, by taking only explicit derivatives, solving for R2
and adequately reordering terms, we obtain the adaptive up-
date rule

FIG. 1. Estimation of �1 and R1 using the proposed technique,
the Sakaguchi Monte Carlo algorithm, and the method of Maybhate
and Amritkar. �a� Temporal evolution of the scalar observed time
series of the primary Lorenz system �solid lines� and the corre-
sponding variable of the secondary system when �1 is estimated.
�b� Normalized absolute error attained by the three estimation algo-
rithms with respect to �1. Plot �c� is the same as �b�, but R1 is
estimated instead of �1.
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R2,n = R2,n−1 +
An − R2,n−1Bn

�Cn−1 + Bn
�14�

where

An = �
�n−1�T

nT

�ẍ1 + �2�ẏ1 + y2 + y1y3���2y1�n−�/Td� ,

Bn = �
�n−1�T

nT

��2y1�2�n−�/Td� ,

Cn−1 = �
0

�n−1�T

��2y1�2��n−1�−�/Td� . �15�

The simulation setup we have considered for assessing the
performance of the algorithm given by Eq. �14� is almost
identical to the one described for Figs. 1�a� and 1�b�. Spe-
cifically, we have kept �=0.94 and T= I=10−3 for the pro-
posed estimation algorithm, and we have used the same ob-
served time series �of length Ts=40 t.u.� and initial values
for y. The MA algorithm is implemented with Ref. �11�, Eq.
�21� ��=20 and �=1� and the Sakaguchi method has been
run through 1000 steps with var�r�=0.4 �20�. The initial pa-
rameter value for all methods was set as R2,0=R1+5.

Figure 1�c� shows the normalized absolute error, defined
as 	R= 	�R2−R1� /R1	, that the three algorithms attain in the
estimation of R1 and, as was the case with �1, the proposed
technique turns out to achieve considerably faster conver-
gence. Variable y1 also converges to x1 rapidly for the three
methods �not shown� in a way very similar to Fig. 1�a�.

To conclude the simulation study, we have considered the
case in which the observed time series is contaminated with
Gaussian noise, i.e., the observations have the form ẍ1+
,
where 
 is a zero-mean white Gaussian random process with

power spectral density P
=1. Otherwise, the simulation
setup is the same as in Fig. 1�c�. The results are depicted in
Fig. 2, where it is seen that convergence is attained, although
there is a floor of approximately 10−2 for the normalized
error 	R.

In summary, we have introduced an online method for
estimating an unknown parameter of a chaotic system with
known functional form using a time series of scalar observa-
tions. The salient feature of our technique is that the adjust-
able parameter is the only control input of the secondary
system. The application of the method is systematic and it
does not require the explicit coupling �neither linear feed-
back nor a Pecora-Carrol type of coupling� of the primary
and the secondary chaotic systems. Compared to some exist-
ing methods based on synchronization �and aided by linear
feedback coupling�, the proposed algorithm attains much
faster convergence.
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